The Respiratory System: Gas Transport

- 1. Oxygen transport in the blood:
 - ____% is bound to hemoglobin
 - ____% dissolves in plasma
- The hemoglobin molecule is composed of ____ polypeptide chains and ____ heme groups containing iron.
 What does oxygen bind to? _____
- 3. After one oxygen molecule (O₂) binds to hemoglobin, it is easier for the other molecules to bind to the hemoglobin.

This is known as _____.

- 4. When oxygen is loaded onto hemoglobin in the lungs, hemoglobin is called ______, and when oxygen is unloaded from the hemoglobin at the tissues it is called ______.
- 5. From the oxygen-hemoglobin dissociation curve, we see the following:

Lungs: Partial pressure of oxygen is ____ mmHg

Hemoglobin is ____% saturated

Tissues: Partial pressure of oxygen is ____ mmHg

Hemoglobin is ____% saturated

6. Effect of high altitude on lung PO₂:

With a decrease of 20 mmHg in the lungs, will the saturation of hemoglobin decrease significantly?

7. Effect of exercise on tissue PO₂:

_.

With a decrease of 20 mmHg in the tissues, will the saturation of hemoglobin decrease significantly?

How does this help the tissues?	
---------------------------------	--

8. Name the other factors that alter PO₂:

During exercise, would an increase (\uparrow) or decrease (\downarrow) in these factors decrease PO₂ hemoglobin

saturation, making more O2 available to the tissues?

	These factors would shift the oxygen-hemoglobin curve to the
9.	List the percentages for CO ₂ transport in the blood:
	% dissolved in plasma
	% combined with hemoglobin
	% converted to bicarbonate ions
	When CO ₂ binds to hemoglobin, it is called
10.	CO ₂ transport as bicarbonate ions:
	CO ₂ binds with water to form acid.
	The catalyst for this reaction is
	The acid mentioned above then dissociates into ions and ions.
	When bicarbonate ions move out of the red blood cell, ions move in.
	This is known as the shift.
	The reaction occurs in the opposite direction at the lungs so that CO_2 can be released.
11.	A decrease in hemoglobin O ₂ leads to an increase in CO ₂ loading. Said another way, O ₂ loading
	facilitates CO ₂ unloading. (Note: The effect is on CO ₂ loading and unloading.)
	This is known as the effect.
12.	A decrease in CO ₂ loading facilitates unloading from hemoglobin. Said another way, CO ₂
	loading facilitates O_2 unloading. (Note: The effect is on O_2 loading and unloading.)

This is known as the _____ effect.