The Nervous System: Membrane Potential

1. Record the intracellular and extracellular concentrations of the following ions (mM/L):

	Intracellular	Extracellular
Sodium (Na ⁺)		
Potassium (K ⁺)		
Chloride (Cl ⁻)		

2. Excitable cells, like neurons, are more permeable to ______ than to ______.

3. How would the following alterations affect the membrane permeability to K⁺? Use arrows to indicate the change in permeability.

a. An increase in the number of passive K⁺ channels ______

b. Opening of voltage-gated K⁺ channels _____

c. Closing of voltage-gated K⁺ channels _____

4. a. What acts as a chemical force that pushes K⁺ out of the cell?

b. What force tends to pull K⁺ back into the cell?

5. When the two forces listed above are equal and opposite in a cell permeable

only to K^+ , this is called the _____ potential for K^+

which is _____ mV.

- 6. In an excitable cell, also permeable to Na^+ and Cl^- , the gradients mentioned in question 4 would both tend to move Na^+ _____ the cell.
- 7. Would the gradients in question 4 promote or oppose the movement of Cl⁻ into the cell?
 - a.

- b.
- 8. Since the neuron is permeable to Na^+ as well as K^+ , the resting membrane

potential is not equal to the equilibrium potential for $K^{\scriptscriptstyle +}\!,$ instead it is

_____ mV.

- 9. What compensates for the movement (leakage) of Na⁺ and K⁺ ions?
- 10. What will happen to the resting membrane potential of an excitable cell if: (Write pos or neg to indicate which way the membrane potential would change.)
 - a. \uparrow extracellular fluid concentration of K⁺
 - b. \downarrow extracellular fluid concentration of K⁺
 - c. \uparrow extracellular fluid concentration of Na⁺
 - d. \downarrow number of passive Na⁺ channels _____
 - e. open voltage-gated K⁺ channels _____
 - f. open voltage-gated Na⁺ channels _____