Endocrine System: Biochemistry, Secretion and Transport of Hormones

1.	Place the following hormones into one of the three categories of hormones (peptides, amines or steroids):
	T_4 (thyroxin), estradiol, norepinephrine, insulin, aldosterone, glucagon, cortisol, growth hormone, T_3
	(triiodothyronine), epinephrine, testosterone and vasopressin (ADH).

Peptides	Amines	Steroids

Peptide horr	mones are synthesized	as large precurs	or hormones c	alled	Th	e hormones
(or prohorm	ones) are stored in		and released	from the cell b	у	Do
peptide horr	nones require a carrier	in the blood stre	eam?			
Catecholem	ines are produced in th	e of	the adrenal gl	and and are cla	ssified as	
hormones si	nce they are derived fr	om	Stimulation	n of the chroma	affin cells car	uses an influx
of	_ ions, which causes the	e vesicles to me	rge with the pl	asma membrar	ne and release	e the hormone
by	Are catecholemin	es water-soluble	e or lipid-solul	ble?		
Thyroid hor	mones include two mo	lecules called _	and	T ₃ consists of	f two	molecules
plus iod	line molecules and is (r	nore or less) abo	ındant than T4	. Are carriers i	required for t	he transport
of thyroid h	ormones?					
All steroid h	normones are derived fi	om	, which ste	roid hormone i	s produced is	determined
by the	present in the ce	ll. The commo	n precursor m	olecule for all	steroid hormo	ones is
	Steroid hormo	nes enter the blo	ood stream by	aı	nd	(do or do
not) require	a carrier. The rate of s	ecretion of stero	oid hormones i	s (faster or slo	wer) than cat	echolemines
because ster	roid hormones are not _	·				
Preganglion	ic sympathetic fibers tr	igger the release	e of	and	(horn	nones) from
the	(gland), th	is is an example	of neural regu	ılation of horm	one secretion	1.
Two examp	les of hormonal regulat	ion of hormone	secretion incl	ude: 1) the neg	ative feedbac	k of T ₃ & T ₄
to decrease.	levels; and 2) th	e negative feedb	ack of cortiso	l which decreas	ses both	and
levels	s.					
Besides incr	reased levels of plasma	glucose and am	ino acids (hun	noral regulation	n), increased	levels of both
(ho	ormone) and the	nervous s	system increas	e plasma insuli	n levels.	
Some hormo	ones are released in rhy	thmic 24 hour p	atterns know	as	rhythms	
	is a hormone when	re stressful stim	uli can overrid	e this pattern a	and increase t	he plasma

	hormone levels. In contrast, hormones (amine hormones) are an example where large amounts
	of the hormones are bound to carrier proteins in the plasma forming a large circulating reservoir. Thus,
	acute changes do not produce large changes in the plasma level of this hormone.
10.	The and are the major organs that metabolize hormones. The type of hormone
	determines how fast they are metabolized and are rapidly metabolized, while
	and take longer to metabolize.