

TABLE 5–1. SELECTED MAMMALIAN HETEROTRIMERIC G PROTEINS CLASSIFIED ON THE BASIS OF THEIR α SUBUNITS*				
G Protein	Activated by Receptors for	Effectors	Signaling Pathways	
G,	Epinephrine, norepinephrine, histamine, glucagon, adrenocorticotropic hormone, luteinizing hormone, follicle-stimulating hormone, thyroid-stimulating hormone, others	Adenylyl cyclase Ca** channels	↑ cAMP ↑ Ca** influx	
G _{at} G ₁₁ (rods) G ₁₂ (cones)	Odorants Photons Photons	Adenylyl cyclase cGMP phosphodiesterase cGMP phosphodiesterase	AMP (olfaction) ↓ cGMP (vision) ↓ cGMP (color vision)	
G _{i1} , G _{i2} , G _{i3}	Norepinephrine, prostaglandins, opiates, angiotensin, many peptides	Adenylyl cyclase Phospholipase C Phospholipase A ₂	↓ cAMP ↑ InsP3, diacylglycerol, Ca ⁺⁺	
Gq	Acetylcholine, epinephrine	K* channels Phospholipase Cβ	Membrane polarization 1 InsP3, diacylglycerol, Ca ⁺⁺	

Table 5-5 Reference Table of Important Second Messengers				
Substance	Source	Effects		
Arachidonic acid	Converted into eicosanoids by cytoplasmic enzymes	Eicosanoids exert paracrine and autocrine effects, such as smooth muscle relaxation		
Calcium	Enters cell through plasma membrane ion channels or is released from endoplasmic reticulum	Activates calmodulin and other calcium- binding proteins; calcium-calmodulin activates calmodulin-dependent protein kinases. Also activates protein kinase C		
Cyclic AMP (cAMP)	A G protein activates plasma membrane adenylyl cyclase, which catalyzes the formation of cAMP from ATP	Activates cAMP-dependent protein kinase (protein kinase A)		
Cyclic GMP (cGMP)	Generated from guanosine triphosphate in a reaction catalyzed by a plasma membrane receptor with guanylyl cyclase activity	Activates cGMP-dependent protein kinase (protein kinase G)		
Diacylglycerol (DAG)	A G protein activates plasma membrane phospholipase C, which catalyzes the generation of DAG and IP ₃ from plasma membrane phosphatidylinositol bisphosphate (PIP ₂)	Activates protein kinase C		
Inositol trisphosphate (IP3)	See DAG above	Releases calcium from endoplasmic reticulu		

名稱	定義	
Receptor	A specific protein in either the plasma membrane or interior of a target cell with which a chemical messenger combines.	
Specificity	The ability of a receptor to bind only one type or a limited number of structurally related types of chemical messengers.	
Saturation	The degree to which receptors are occupied by a messengers. If all are occupied, the receptors are fully saturated; if half are occupied, the saturation is 50 percent, and so on.	
Affinity	The strength with a chemical messenger binds to its receptor.	
Competition	The ability of different molecules very similar in structure to its receptor.	
Antagonist	A molecule that competes for a receptor with a chemical messenger normally present in the body. The antagonist binds to the receptor but does not trigger the cell's response.	
Agonist	A chemical messenger that binds to a receptor and triggers the cell's response; often refers to a drug that mimics a normal messenger's action.	
Down- regulation	A decrease in the total number of target-cell receptors for a given messenger in response to chronic high extracellular concentration of the messenger.	
Up-regulation	An increase in the total number of target-cell receptors for a given messenger in response to a chronic low extracellular concentration of the messenger.	
Supersensitivity The increased responsiveness of a target cell to a given messenger, resulting from up-regulation. 22		

