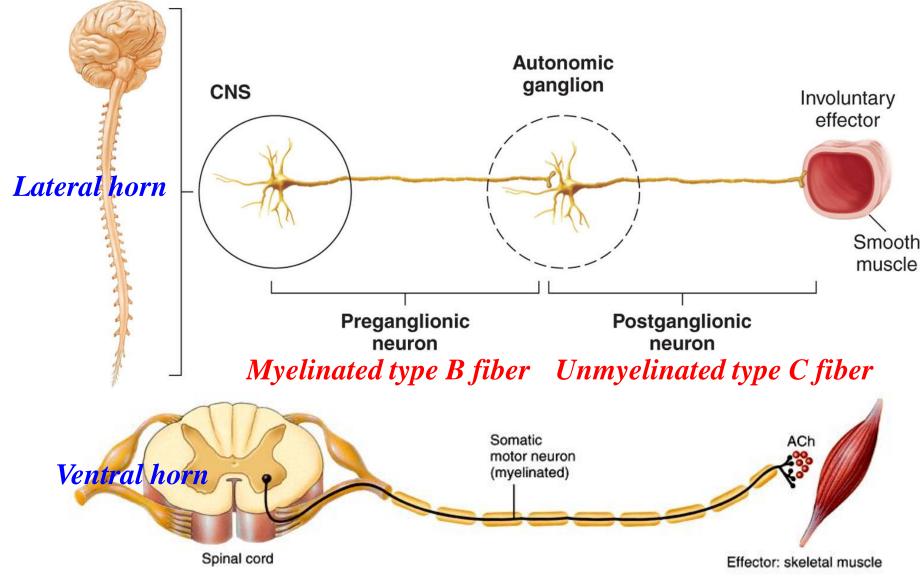


<u>Autonomic Nervous System</u> <u>Involuntary Control</u>

Autonomic vs. Somatic System

Property	Autonomic: parasympathetic	Autonomic: sympathetic	Somatic
Origin	Brainstem or lateral horns of sacral spinal cord	Lateral horns of thoracic and lumbar spinal cord	Ventral horns of spinal cord
Neurons in pathway	Two (preganglionic and postganglionic) <i>Ganglia</i>	Two (preganglionic and postganglionic)	One (motor neuron)
Effector organs	Cardiac muscle, smooth muscle, glands	Cardiac muscle, smooth muscle, glands, adipose tissue	Skeletal muscle NMJ
Neurotransmitters at neuroeffector junction	Acetylcholine	Norepinephrine	Acetylcholine
Receptor type at effector organ	Muscarinic cholinergic	Adrenergic (all classes)	Nicotinic cholinergic
Effects on effector organ	Either excitation or inhibition	Either excitation or inhibition	Excitation
Control	Primarily involuntary	Primarily involuntary	Primarily voluntary

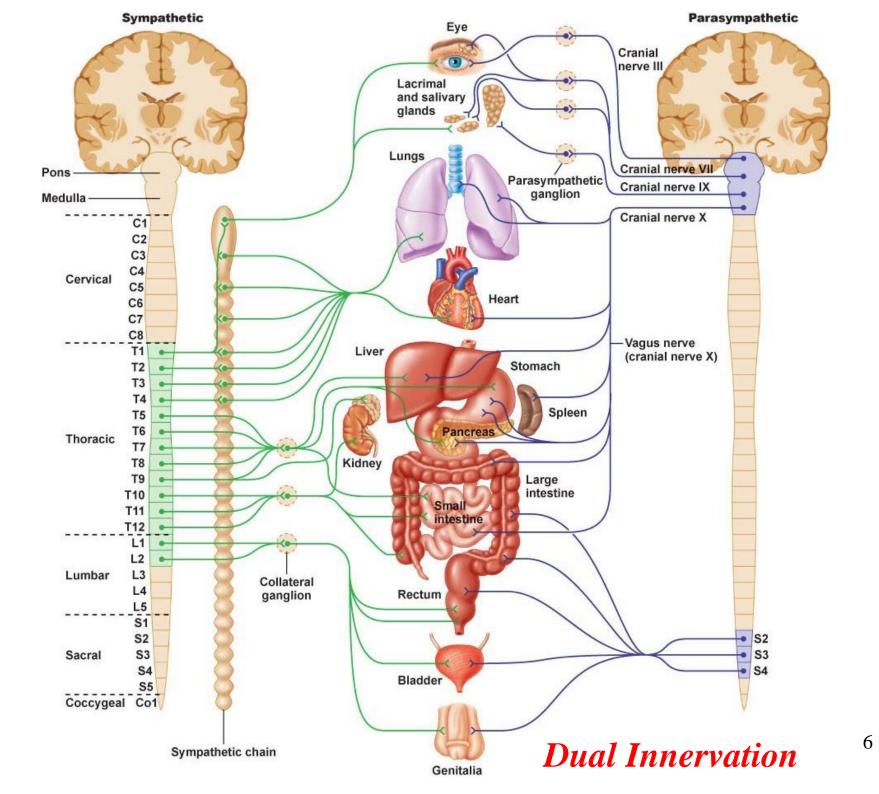
Type of nerve fibers


Effect of denervation

Slow-conducting; pregan. fiber (3 μ m), and postgan. fiber (1 μ m)

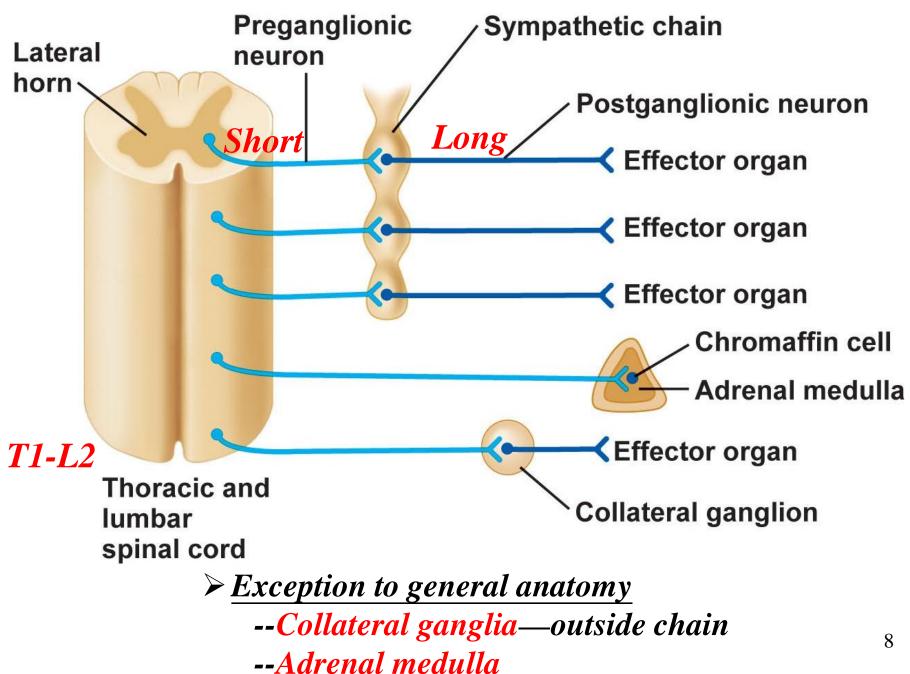
Muscle tone and function persist; target cells show denervation hypersensitivity $\frac{Fast-conducting}{(9-13 \ \mu m)}, and myelinated$

Flaccid paralysis and atrophy

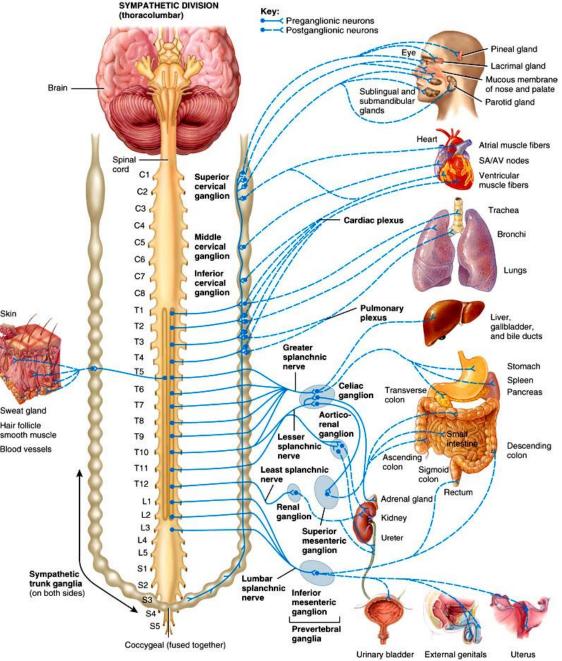

Autonomic vs. Somatic System

Dual Innervation of the Autonomic Nervous System

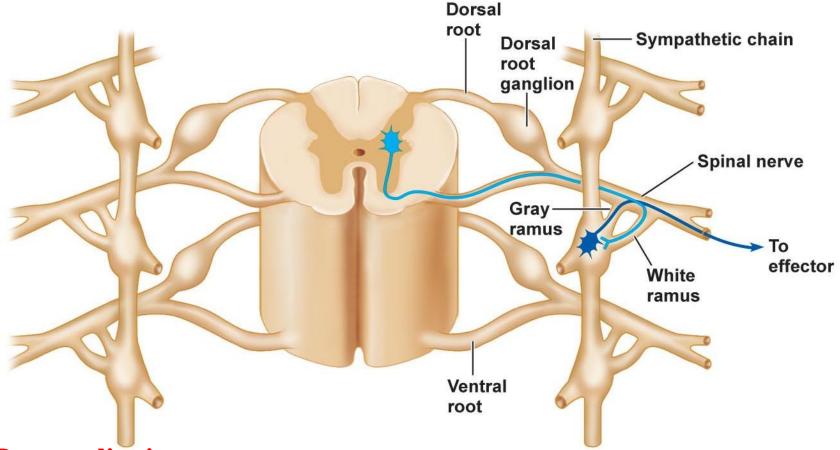
Both divisions of the autonomic nervous system innervate most effector organs


- **Primary function**—regulate organs to maintain homeostasis
- Parasympathetic and sympathetic activities tend to be **antagonistic, complementary or cooperative**
 - --Parasympathetic nervous system—**rest**
 - --Sympathetic nervous system—fight or flight response

Sympathetic Division


- Preganglionic neurons originate in thoracolumbar spinal cord (*Thoracolumbar division: T1-L2*)
- General anatomy
 - --Short preganglionic neurons to sympathetic chain
 - --Long postganglionic neurons from chain to effector organs
 - --Ganglia linked together in sympathetic chain
- Sympathetic ganglia:
 - --Sympathetic trunk ganglia = <u>para</u>vertebral ganglia
 - = sympathetic chain
 - --<u>Prevertebral (collateral) ganglia</u>: celiac, superior mesenteric, and inferior mesenteric

Sympathetic Division



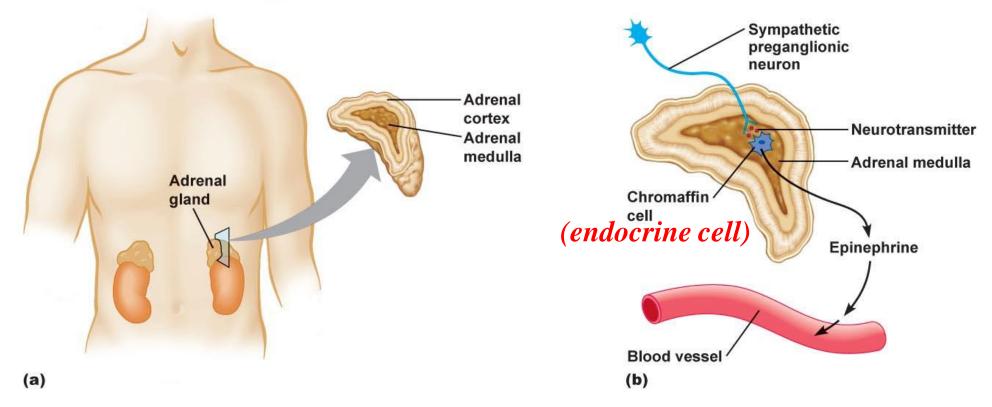
Sympathetic Division

- A single sympathetic preganglionic fiber has many axon collaterals and may synapse with 20 or more postganglionic neurons (divergence發散性)
- Allows the sympathetic division to act as a <u>single</u> <u>unit</u> through mass activation
- Effects of sympathetic stimulation are more widespread than the effects of parasympathetic stimulation

Common Sympathetic Fibers

> Preganglionic

- --Exits via ventral root of spinal cord and enters spinal nerve
- --Axons leave spinal nerve as white ramus and enter sympathetic ganglia
- --Communicate in ganglia with postganglionic neurons


Postganglionic

- --Leave ganglia as gray ramus and re-enter spinal nerve
- --Travel to effector organ in spinal nerve

Innervation of Adrenal Gland

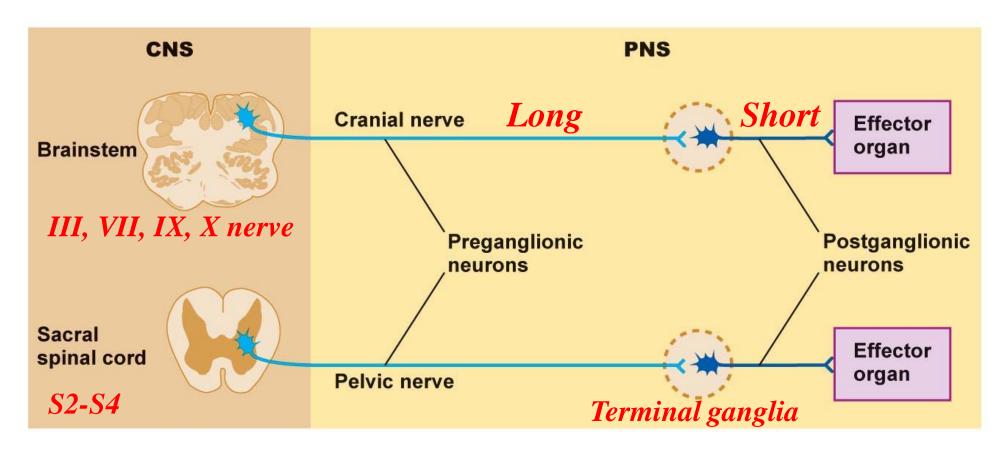
Sympathoadrenal System

Fight-Flight Responses

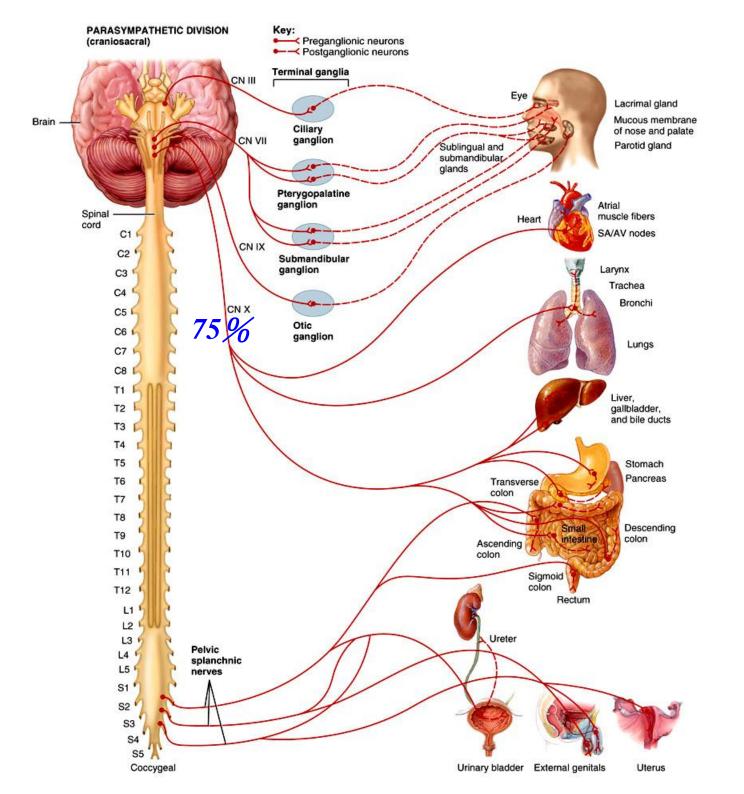
Summary of the Sympathetic Division

Parts of Body Innervated	Spinal Origin of Preganglionic Fibers	Origin of Postganglionic Fibers
Eye	C8 and T1	Cervical ganglia
Head and neck	T1 to T4	Cervical ganglia
Heart and lungs	T1 to T5	Upper thoracic (paravertebral) ganglia
Upper extremities	T2 to T9	Lower cervical and upper thoracic (paravertebral) ganglia
Upper abdominal viscera	T4 to T9	Celiac and superior mesenteric (collateral) ganglia
Adrenal	T10 and T11	Not applicable
Urinary and reproductive systems	T12 to L2	Celiac and interior mesenteric (collateral) ganglia
Lower extremities	T9 to L2	Lumbar and upper sacral (paravertebral) ganglia

Collateral ganglia: Postganglionic neurons innervate organs of the digestive, urinary, and reproductive systems


Parasympathetic Division

• Preganglionic neurons originate in brainstem or sacral spinal cord (*Craniosacral division:*


CN III, VII, IX, X, and S2-S4)

- General anatomy
 - --Long preganglionic neurons to ganglia near effector organ
 - --Preganglionic neuron communicates with postganglionic neuron in ganglia
 - --Short <u>postg</u>anglionic neurons from ganglia to effector organs
- •They synapse on ganglia located <u>near or in effector</u> organs = **terminal ganglia**

Parasympathetic Division

Effectors in the adrenal medulla, skin (sweat glands, arrector pili muscle) and skeletal muscles (blood vessels) receive sympathetic but not parasympathetic innervation

Summary of the Parasympathetic Division

Nerve	Origin of Preganglionic Fibers	Location of Terminal Ganglia	Effector Organs
Oculomotor (third cranial) nerve	Midbrain (cranial)	Ciliary ganglion	Eye (smooth muscle in iris and ciliary body)
Facial (seventh cranial)	Pons (cranial)	Pterygopalatine and submandibular ganglia	Lacrimal, mucous, and salivary glands
Glossopharyngeal (ninth cranial) nerve	Medulla oblongata (cranial)	Otic ganglion	Parotid gland
Vagus (tenth cranial) nerve	Medulla oblongata (cranial)	Terminal ganglia in or near organ	Heart, lungs, gastrointestinal tract, liver, pancreas
Pelvic spinal nerves	S2 to S4 (sacral)	Terminal ganglia near organs	Lower half of large intestine, rectum, urinary bladder, and reproductive organs

Comparison of the Sympathetic and Parasympathetic Divisions

Sympathetic Divisions	Parasympathetic Divisions
Originate from T1 to L2 segment of spinal cord (thoracolumbar division)	Originate from brain (III, VII, IX, X cranial nerves) and S2—S4 segment of spinal cord (craniosacral division)
Pre-ganglionic fibers are short, relay either in <u>lateral ganglia</u> or collateral ganglia	Pre-ganglionic fibers are very long reaching up to <u>terminal ganglia</u> mostly on viscera
Post-ganglionic fibers are long. Nerve endings are adrenergic in nature except in sweat gland (ACh)	Post-ganglionic fibers are short. Nerve endings are cholinergic in nature
Functionally, it is <u>vasomotor and</u> <u>pilomotor to skin</u> . It is seen when subject is in fear, fight and flight responses. It dilates skeletal muscle blood vessels (ACh)	Functionally, it is seen when subject is fully relaxed. Parasympathetic system has no effect on skin
Effect is <u>widely diffused</u> and directed towards mobilization of resources and expenditure of energy during emergency and emotional stress	Effect is <u>discrete</u> , <u>isolated</u> , directed towards conservation and restoration of the resources (rest and digest)
It supplies visceral blood vessels, skin	It only supplies viscera

Autonomic Neurotransmitters and Receptors

(b) Parasympathetic nervous system

Response to Cholinergic Stimulation

• ACh released from <u>preganglionic</u> neurons of both the sympathetic and parasympathetic division is **stimulatory**

• ACh from <u>postganglionic</u> neurons of the parasympathetic division can be stimulatory or inhibitory, depending on <u>receptors</u>

Types of Cholinergic Receptors

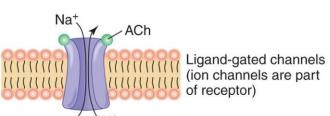
• <u>Nicotinic</u> cholinergic receptors (N_1-N_4)

- --Found in autonomic postganglionic and NMJ
- --Cause cation channels to open (channel-gated)
- --Channel opening results in depolarization

• <u>Muscarinic</u> cholinergic receptors (M_1-M_5)

- --Found in visceral organs
- --Five subtypes identified; effect can be **stimulatory or inhibitory** (opening K⁺ or Ca²⁺ channels) on target cell
- --G protein-coupled and second messenger system

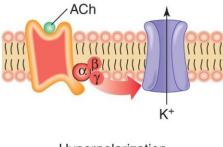
Table 9.6 Cholinergic Receptors and Responses to Acetylcholine


Receptor	Tissue	Response	Mechanisms
Nicotinic N2	Skeletal muscle	Depolarization, producing action potentials and muscle contraction	ACh opens cation channel in receptor
Nicotinic N ₁	Autonomic ganglia	Depolarization, causing activation of postganglionic neurons	ACh opens cation channel in receptor
Muscarinic (M ₃ , M ₅)	Smooth muscle, glands	Depolarization and contraction of smooth muscle, secretion of glands	ACh activates G-protein coupled receptor, opening Ca ²⁺ channels and increasing cytosolic Ca ²⁺
Muscarinic (M ₂)	Heart	Hyperpolarization, slowing rate of spontaneous depolarization	ACh activates G-protein coupled receptor, opening channels for K ⁺

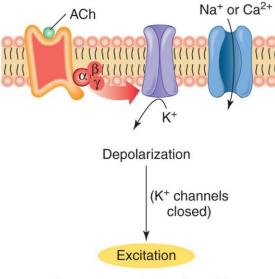
.

Nicotinic ACh receptors

Postsynaptic membrane of


- All autonomic ganglia
- All neuromuscular junctions
- Some CNS pathways

....



Hyperpolarization (K⁺ channels opened)

Inhibition

Produces slower

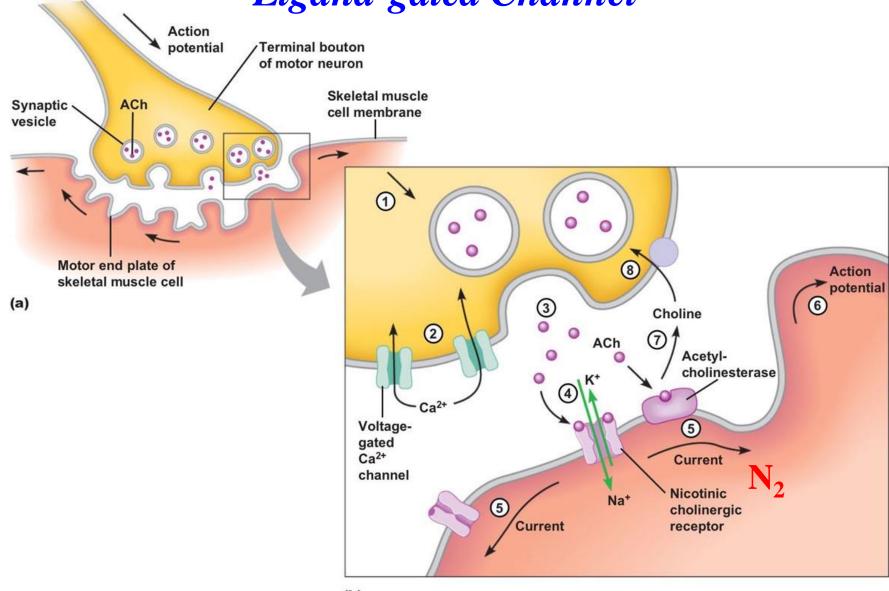
heart rate

. .

Muscarinic ACh

receptors

· Produces parasympathetic nerve effects in the heart, smooth muscles, and glands


influence ion channels by means of G-proteins)

· G-protein-coupled receptors (receptors

Causes smooth muscles of the digestive tract to contract

Nicotinic Cholinergic Receptors: NMJ

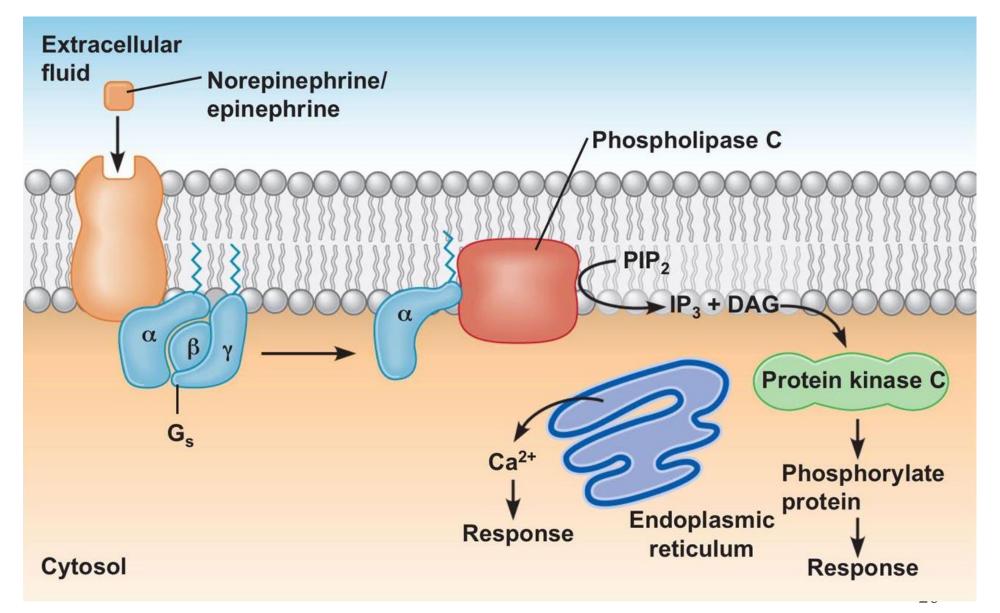
Channel-gated Receptor Ligand-gated Channel

Response to Adrenergic Stimulation

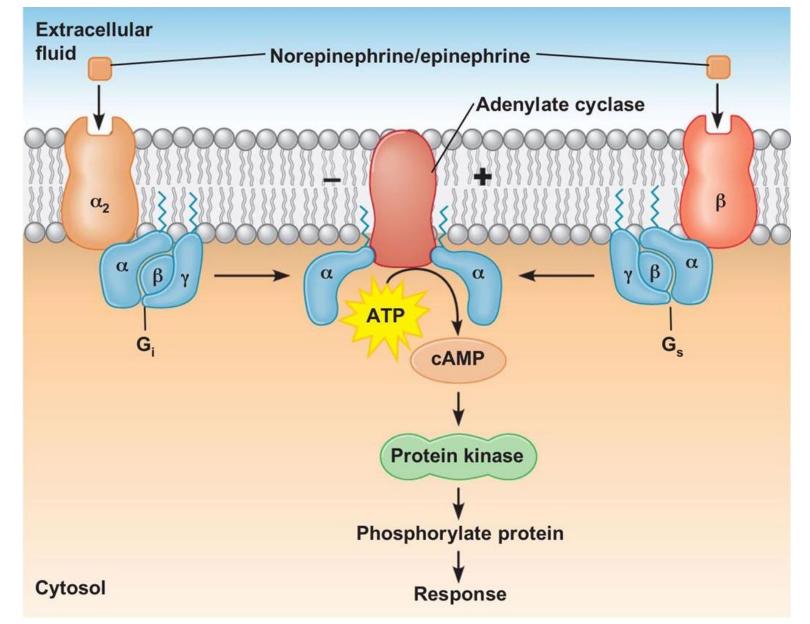
- Can stimulate or inhibit, depending on <u>receptors</u>
 - --Stimulation: heart, dilatory muscles of the iris, smooth muscles of some blood vessels (causes vessel constriction)
 - --Inhibition: Bronchioles in lungs, other blood vessels; inhibits contraction and causes dilation of these structures

Types of Adrenergic Receptors

•Two main classes: **alpha** and **beta**


- Each has subclasses
- All are **G protein-coupled** and second messenger systems

Alpha Receptors	Beta Receptors	
\succ Alpha 1 (α 1)	≻Beta 1 (β1)	
	≻Beta 2 (β2)	
≻Alpha 2 (α2)	≻Beta 3 (β3)	


Properties of Alpha-Adrenergic Receptors

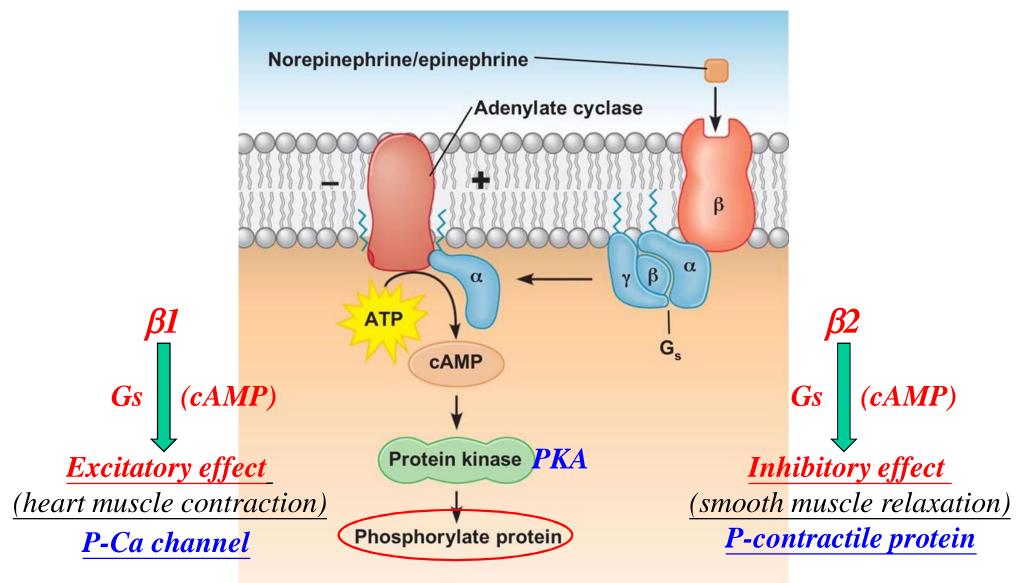
- •Located in <u>effector organs</u> of sympathetic nervous system
- <u>Most common</u>
- Usually **excitatory**
- Affinity: norepinephrine > epinephrine
- αl receptors use a Ca²⁺ 2nd messenger (Gs: Ca²⁺)
- $\alpha 2$ receptors used as **autoreceptors (Gi: cAMP**)
 - --Located on presynaptic axons
 - --When stimulated, result in <u>inhibition</u> of norepinephrine release in the synapse (*clonidine: α2 agonist*)

Sympathetic Signal Transduction: Alpha 1 Receptors

Sympathetic Signal Transduction: <u>Alpha 2 and Beta Receptors</u>

Properties of Beta-Adrenergic Receptors

- •All *activate cAMP* 2nd messenger
- •Affinities for norepinephrine and epinephrine vary
- • β 1 receptors located in <u>cardiac muscle and the kidneys</u>
 - --Usually excitatory (Gs)
 - --Affinity: norepinephrine = epinephrine
- β2 receptors located in some blood vessels and smooth muscle


--Usually inhibitory (Gs)

--Affinity: norepinephrine << epinephrine

β3 receptors located in <u>adipose tissue</u>
 --Usually <u>excitatory (Gs)</u>

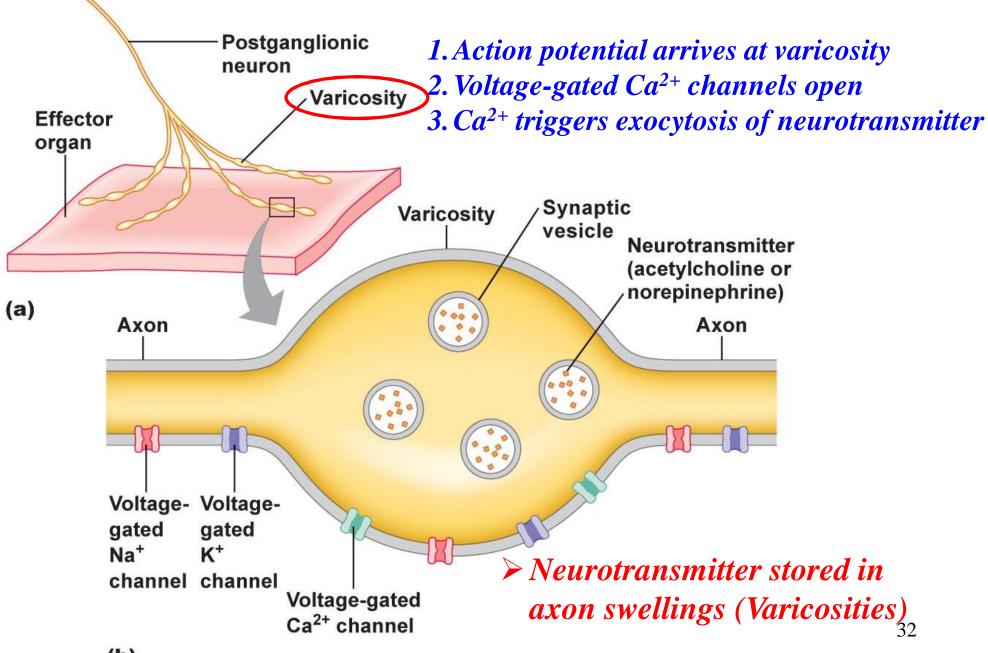
--Affinity: norepinephrine = epinephrine

Sympathetic Signal Transduction: <u>Beta 1 and Beta 2 Receptors</u>

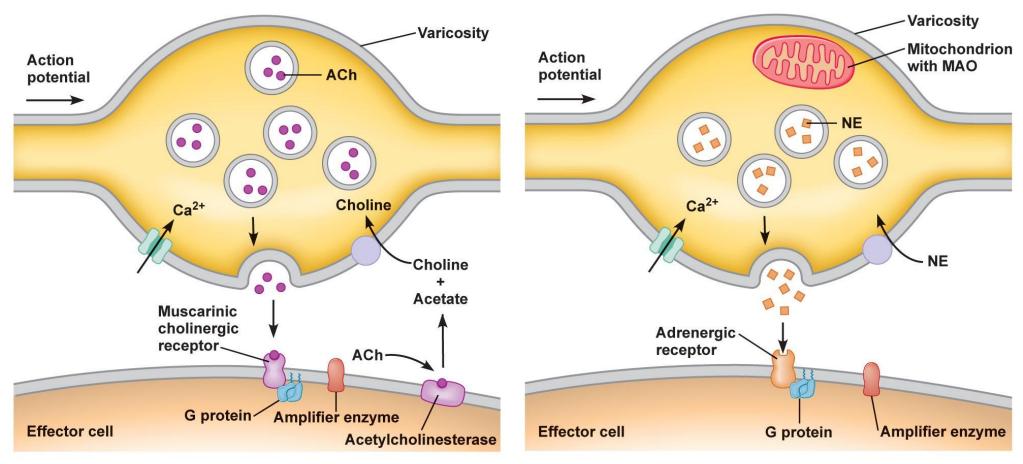
Effects of Beta-Adrenergic Receptors Stimulation

Receptor type	Tissue in which present	Effect of stimulation (agonist)
β ₁	Heart	Increased rate, force, conduction velocity, automaticity
	Kidney	Renin secretion
	Fat tissue	Lipolysis
β ₂	Smooth muscle	
. 7	 bronchial 	Bronchodilatation
	 vascular 	Vasodilatation (<i>reflex tachycardia</i>)
	intestinalbladder	Reduced motility and tone
	Skeletal muscle	Increased contractility, glycogenolysis, potassium uptake; tremor (overdose) (<i>hypokalemia</i>)
	Pancreas	Increased insulin secretion
	Liver	Glycogenolysis, gluconeogenesis
	Central nervous system	Nervous tension, headache, insomnia

▶瘦肉精=Beta 2-receptors agonist


- ✓萊克多巴胺(Ractopamine=培林)
- ✓沙汀胺醇(Salbutamol)
- ✓克倫特羅(Clenbuterol)
- ✓特布它林(Terbutaline)

Adrenergic Receptors


Receptor type	Effector organ with receptor type	Relative affinities*	Signal transduction mechanism	Effect on effector organ [†]
α1	Most vascular smooth muscle, pupils	$\rm NE > Epi$	Activates IP_3 Gs	Excitatory
α ₂	CNS, platelets, adrenergic nerve terminals (autoreceptors), some vascular smooth muscle, adipose tissue	NE > Epi	Inhibits cAMP Gi	Excitatory
β1	CNS, cardiac muscle, kidney	NE = Epi	Activates cAMP Gs	Excitatory
β ₂	Some blood vessels, respiratory tract, uterus	Epi ≫ NE	Activates cAMP Gs	<u>Inhibitory</u>
β ₃	Adipose tissue	NE = Epi	Activates cAMP Gs	Excitatory
*NE = norepinephrine; Epi = epinephrine; > = greater than; \gg = much greater than [†] Effects are generalizations and not absolute.				

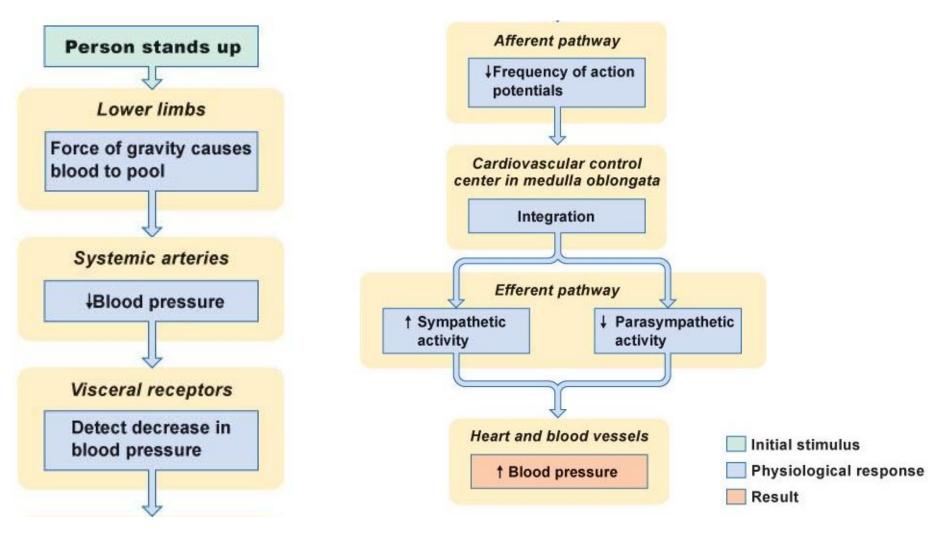
Organ	Adrenergic Effects of Sympathoadrenal System	Adrenergic Receptor
Eye	Contraction of radial fibers of the iris dilates the pupils	α ₁
Heart	Increase in heart rate and contraction strength	β_1 primarily
Skin and visceral vessels	Arterioles constrict due to smooth muscle contraction	α ₁
Skeletal muscle vessels	Arterioles constrict due to sympathetic nerve activity	α ₁
	Arterioles dilate due to hormone epinephrine	β₂
Lungs	Bronchioles (airways) dilate due to smooth muscle relaxation	β₂
Stomach and intestine	Contraction of sphincters slows passage of food	α ₁
Liver	Glycogenolysis and secretion of glucose	α ₁ , β ₂

Autonomic Neuroeffector Junctions

Neurotransmitters from Varicosities

(a) Acetylcholine release from postganglionic neuron

Parasympathetic


(b) Norepinephrine release from postganglionic neuron

Sympathetic

Regulation of Autonomic Function

- **Dual innervation** of organs (antagonists)
- Balance between parasympathetic and sympathetic activity
 - --Parasympathetic—rest
 - --Sympathetic—excitation
- <u>Increases</u> in parasympathetic activity coupled with <u>decreases</u> in sympathetic activity
- •<u>Increases</u> in sympathetic activity coupled with <u>decreases</u> in parasympathetic activity

Autonomic Control: Blood Pressure

Autonomic Function

• Parasympathetic Activity

- --Quiet, relaxed states
- --Active in "rest and digest"
- --Energy stores
- --Increase gastrointestinal activities
- --Decrease heart rate and blood pressure
- --Dilates visceral blood vessels

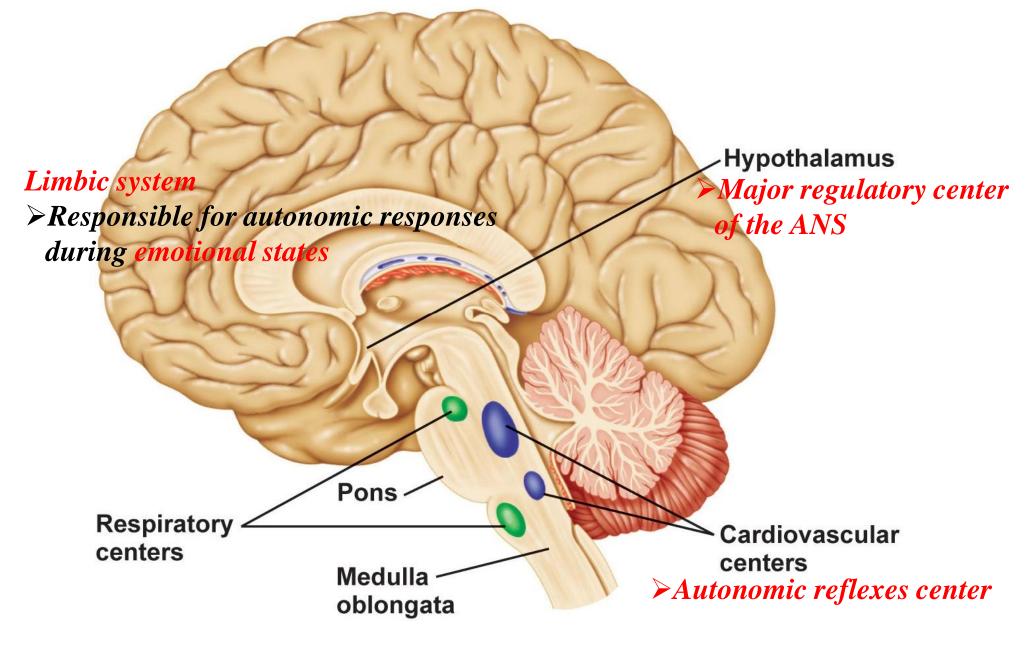
• Sympathetic Activity

- --Fight-or-flight response
- --Prepare for emergency, stress, and exercise
- --Increase heart rate and blood pressure
- --Mobilize energy stores
- --Pupillary dilation
- --Decrease gastrointestinal and urinary functions

	Parasympathetic Nervous System*	Sympathetic Nervous System	
Organ system	Effect	Effect	Adrenergic receptor class
Heart	M_{2}		
SA node	Decreases heart rate	Increases heart rate	β ₁
AV node	Decreases conduction velocity	Increases conduction velocity	β1
Force of contraction	Decreases (small effect)	Increases	β1
Blood vessels			
Arterioles to most of body	None	Vasoconstriction	α1
Arterioles to skeletal	None	Vasoconstriction	α1
muscle		Vasodilation (epinephrine)	β ₂
Arterioles to brain	None	None	
Veins	None	Vasoconstriction	α1
		Vasodilation (epinephrine)	β ₂

*Receptor types for the parasympathetic nervous system are not given, because

⁺Sympathetic postganglionic neurons to the sweat glands release acetylcholine as the neurotransmitter.


	Parasympathetic Nervous System*	Sympathetic N	ervous System
Organ system	Effect	Effect	Adrenergic receptor class
Lungs	M_3		
Bronchial muscle	Contraction	Relaxation	β ₂
Bronchial glands	Stimulates secretion	Inhibits secretion	α
Digestive tract	M_3		
Motility	Increased	Decreased	$\alpha_1, \alpha_2, \beta_2$
Secretions	Stimulated	Inhibited	α2
Sphincters	Relaxation	Contraction	α1
Pancreas			
Exocrine glands	Stimulates secretion	Inhibits secretion	α
Endocrine glands	Stimulates secretion	Inhibits secretion	α2
Salivary glands	Stimulates watery secretion	Stimulates mucus secretion	α ₁
Kidneys	Complement	ary Effects	
Renin release	None	Stimulated	β ₁
*Receptor types for the parasympathetic nervous system are not given, because <i>all</i> effector organs have muscarinic cholinergic receptors. [†] Sympathetic postganglionic neurons to the sweat glands release acetylcholine as the neurotransmitter.			

	Parasympathetic Nervous System*	Sympathetic Nervous System	
Organ system	Effect	Effect	Adrenergic receptor class
Urinary bladder	M_3		
Bladder wall	Contraction	Relaxation (small effect)	β ₂
Sphincter	Relaxation	Contraction	α ₁
Male reproductive tract	Male reproductive tract Cooperative Effects		
Blood vessels (erection)	Vasodilation	None	
Vas deferens and seminal vesicles (ejaculation)	None	Ejaculation	α_1
Female reproductive tract			
Uterus, nonpregnant	Unknown	Relaxation	β2
Uterus, pregnant	Unknown	Contraction	α1
*Receptor types for the parasympathetic nervous system are not given, because <i>all</i> effector organs have muscarinic cholinergic receptors. [†] Sympathetic postganglionic neurons to the sweat glands release acetylcholine as the neurotransmitter.			

	Parasympathetic Nervous System*	Sympathetic Nervous System	
Organ system	Effect	Effect	Adrenergic receptor class
Skin			
Sweat glands	Stimulates secretion	Stimulates secretion	α_1 , muscarinic [†]
Piloerector muscles	None	Contraction (hairs stand up)	α1
Eye	M_3		
Iris muscles (pupil size)	Contraction of circular muscle (pupillary constriction)	Contraction of radial muscle (pupillary dilation)	α1
Ciliary muscles (accommodation)	Contraction for near vision	Relaxation for far vision (small effect)	β ₂
Metabolism			
Liver	None	Stimulates glycogenolysis and gluconeogenesis	α_1, β_2
Adipose tissue	None	Stimulates lipolysis	β ₃

[†]Sympathetic postganglionic neurons to the sweat glands release acetylcholine as the neurotransmitter.

Brain Areas of Autonomic Regulation

Autonomic Reflexes

•Many visceral functions are regulated by autonomic reflexes

--Sensory input is sent to brain centers=medulla (usually by the vagus nerve), which integrate the information and modify the activity of preganglionic neurons

表 7-5 感覺訊息經迷走神經傳入到延腦中樞後的反射效應			
位置	接受器型式	反射效應	
胃腸道	牽張感受器	飽足感、疼痛、胃腸不適	
主動脈	壓力感受器	受血壓上升的刺激,造成反射性心跳減慢	
	化學感受器	血中 CO2 濃度增加和 O2 濃度減少的刺激,會造成呼吸加快、 心跳速率增加及血管收縮	
肺 部	J型感受器	受肺充血的刺激,造成喘不過氣的感覺、反射性心跳減慢、 血壓下降	
	牽張感受器	抑制吸氣動作;血管擴張;心跳速率加快	
心 臟	心房牽張感受器	抑制抗利尿激素的分泌,造成排尿量增加	
	心室牽張感受器	血管擴張、反射性心跳減慢	